Rec. sool. Surv. India, 69: 295-303, 1976

DISTRIBUTION OF THE GENUS CYCLOCOELUM BRANDES, 1892 ON HOST ORDERS AND ITS BEARING ON THEIR INTER-RELATIONSHIPS

By

C. B. SRIVASTAVA and B. S. CHAUHAN

Zoological Survey of India, Calcutta.

(With 1 Table)

Digenetic trematodes are endoparasitic forms inhabiting in adult stages the vertebrates, and invertebrates and lower vertebrates in The trematodes exhibit host-specificity of varying larval forms. Host specificity is well marked in Monogenetic trematodes degrees. while in digenetic trematodes, it is more pronounced in larval However, the fact that certain genera of these trematodes condition. have not been recorded from some host orders inhabiting the same ecological niche as others harbouring these parasites suggests incipient host-specificity in adult trematodes also. To cite a concrete example, species of the genus Cyclocoelum Brandes, 1892, known to parasitise as adults, birds of the orders Anseriformes, Gruiformes, Charadriiformes etc. (vide infra), are not known from the Ciconiiformes which share the same habitat as the orders mentioned above (Table 1).

The intricate relationship between the host and its parasite has been utilized by parasitologists in the study of the phylogeny of hosts and their parasites, ancient migratory routes and palaeogeological land connections etc. An exhaustive review was published by Metcalf (1929) and the principle has been well taken advantage of by several entomologists in Phthiraptera (Hopkins, 1942, 1949, Clay, 1950 a,b, 1951, Eichler, 1949, Lakshminarayana, 1968, 1970 a,b,). In recent years Baer (1951), Cameron (1952, 1964), Manter (1955,1963, 1965), Sindermann (1937), Stunkard and Gandal (1965), Szidat (1961 a,b) have paid attention on zoogeography and phylogeny of the hosts on the basis of their trematode parasites.

A brief discussion on the distribution of the genus *Cyclocoelum* Brandes, 1892 on different avian host orders and its bearing on their inter-relationships are given here.

The genus Cyclocoelum Brandes, 1892 (Family Cyclocoelidae) has been thoroughly revised by Dubois (1959). In the course of present work six species of this genus have been studied on five host species belonging to two orders.

The genus Cyclocoelum (sensu Dubois, op.cit.) contains three subgenera viz., Cyclocoelum (sensu. str.,) Haematotrephus and Hyptiasmus. The genus chiefly occurs on Phoenicopteriformes, Anseriformis, Galliformes, Charadriiformes, Podicipitiformes, Piciformes and Attention has been paid here on the distribution Passeriformes. of the genus on different groups of these host orders in the light of Dubois' revisionary work and present records. It is interesting to find that some of the conclusions arrived at agree with those drawn parasitological, palaeontological, evolutionary from other and taxonomic contribution on these host orders. The distribution of the known species on the different host orders is given in Table 1. Since Charadrifformes comprise most of the host groups, the following discussion is chiefly based on it.

Spec	cies of genus Cyclocoelum	Bird-host orders and families
1.	Cyclocoelum (Cyclocoelum) m	nutabile Jacanidae, Charadriidae (Charadriiformes), Rallidae (Gruiformes), Phasianidae (Galliformes)
2.	C. (C.) ovopunctatum	Charadriiformes
3.	C. (C.) obscurum	Charadriiformes, Rallidae, Passeriformes
4.	C. (C.) phasidi	Galliformes
5.	C. (C.) erythropis	Charadriiformes
6.	C. (C.) theophili	Phoenicopterus (Phoenicopteriformes)
7.	C. (C.) vogeli	Galliformes
8.	C. (Haematotrephus) gendrei	Jacanidae (Charadriiformes)
9.	C. (H.) lanceolatum	Recurvirostrinae, Charadriidae, Scolopacinae
10.	C. (H.) tringae	Scolopacinae
11.	C. (H.) phaneropsolum	Scolopacinae
12.	C. (H.) brazilianum	Scolopacinae
13.	C. (H.) kossacki	Scolopacinae, Recurvirostrinae
14.	C. (H.) jaenschi	Podice pedifor mes
15.	C. (Hyptiasmus) arcuatum	Anseriformes
16.	C. (Hy.) robustum	Anseriformes
17.	C. (Hy.) magnum	Anseriformes
18.	C. (Hy.) oculeum	Rallidae
19.	C. (Hy.) magnipoles	Charadriiformes
20.	C. (Hy.) skrjabini	Grus
21.	C. (Hy.) antigonis	Grus
22.	C. (Hy.) ominosum	Grus
23.	C. (Hy.) elongatum	Passeriformes, Piciformes, Galliformes
24.	C. (Hy.) vagum	Galliformes

Table 1.— Showing the distribution of the genus Cyclocoelum on bird-hosts.

From the distribution point of view, the subgenus Cyclocoelum (sensu. str.) occurs chiefly on Phoenicopteriformes, Galliformes, Gruiformes, Charadriiformes, Passeriformes; the subgenus Haematotrephus on Podicipitiformes, Charadriiformes and subgenus Hyptiasmus occurs on Anseriformes, Galliformes, Gruiformes, Piciformes, Passeriformes and a single genus of Charadriiformes.

CHARADRIIFORMES

Mayr and Amadon (1951) included the families Jacanidae, Thinocoridae, Chionididae, Dromadidae, Burhinidae, Haematopodidae, Charadriidae (subfamily Charadriinae, Scolopacinae, l'halaropinae, Recurvirostrinae, Rostratulinae), Glareolidae, Laridae (subfamilies Sterocorariinae, Larinae, Sterninae, Rhynchopinae) and Alcidae under the order Charadriiformes. Recurvirostrinae has, however, been raised to family rank by Ripley (1961). Of these families Jacanidae, Charadriidae and Recurvirostridae are known to have been infected by these parasites.

Charadriidae : The family Charadriidae is divided into three subfamilies, namely Charadriinae, Scolopacinae and Phalaropinae (vide Ripley, 1961).

Lakshminarayana (1970b) has proposed what he calls "Hopkins' Principle" which enunciates that one correspondence between the lice of two hosts, whose hypothetical relationship is under examination means very little; two such correspondences establish a probability that it may be genuine; and that three correspondences come very close to certainity. This principle may also hold good for other groups of parasites. Using this principle it appears that Scolopacinae and Charadriinae are closely related because they share atleast four species of the same parasites. Clay (1962) on the basis of the distribution of mallophagan genus Actornithophilus states that :

"all the genera of the Charadriidae form a related group with a gap between the Vanellinae *sensu* Peters and the Charadriinae; and follows Bock's contention of the close relationship of the 'genera' comprising the Charadriinae on one side and the Vanellinae on the other, but differs in suggesting that *Vanellus* is somewhat distinct from the rest of the Vanellinae."

From the helminthological point of view it seems that the so called gap between *Vanellus* and the members of Scolopacinae is not much as compared to the other Charadriinae, in which *Vanellus* is also included. Among the members of the Scolopacinae, many genera share common parasitic fauna and it may be attributed either to the feeding habit and/or from a common descent. Peters (1934), Mayr and Amadon (1951) and Biswas (1953) consider Recurvirostrinae as a subfamily of Charadriidae while some authors like Ripley (op.cit.) as a family. Three species of parasites are shared by the members of Recurvirostridae with Charadriinae and Scolopacinae. This shows that Recurvirostridae has closer relationship with Charadriidae. Even Clay (op.cit.) considers that species of the Actornithophilus parasitic on Recurvirostridae has similarities with those present on Charadriinae except *Ibidorhyncha* (Sf : Ibidorhynchinae, F. Recurvirostridae).

Jacanidae : Two species of the parasite, namely Cyclococlum (Cyclocoelum) mutabile and Cyclocoelum (Haematotrephus) gendrei^{*} are known from Jacanidae. Of these the former is known extensively on Rallidae (Gruiformes) and two genera of Charadriidae (Tringa, Scolopacinae; Vanellus, Charadriinae) and Callus (Galliformes). It is interesting to note that Jacana, the host of C. (C.) mutabile, shares the parasite with a number of genera of Rallidae, suggesting its relationship closer to Rallidae than Charadriiformes in which the family Jacanidae is normally placed. This fully endorses the evidences derived from the Mallophaga that Jacanidae is more closely related to Rallidae and perhaps the connecting family between the two host orders (Clay, 1950b; Lakshminarayana, 1970a). The single record of C. (C.) mutabile on Gallus may be accidental.

Recurvirostriidae: Two genera of this family, namely Recurvirostra and Himantopus are known to have trematode infestation. Restricting to the parasites of the genus Cyclocoelum, C. (C.) obscurum occurs on the former and Cyclocoelum (Haematotrephus) kossacki and Cyclocoelum (Hyptiasmus) magniproles on the latter. Cyclocoelum (Cyclocoelum) obscurum is very common on Scolopacinae as also Cyclocoelum (Haematotrephus) kossacki and this clearly suggests the probable relationship of Himantopus with Scolopacinae, though the latter has its own distinct parasite species also, supporting contention of Mayr and Amadon (1951) contrary to Ripley (1961).

GRUIFORMES

The following families are included under Gruiformes by Mayr and Amadon (1951) : Cariamidae, Psaphiidae, Gruidae, Aramidae, Eurypygidae, Heliornithidae, Rhynochetidae, Otididae, Rallidae, Mesoenatidae and Turnicidae.

Lowe (1931) considers that amongst Gruiformes the Gruidae is more closely related to Charadriiformes than Rallidae and hence suggested the division into Rallimorphae and Telmatomorphae.

^{*}While describing C. (H.) gendrei, Dubois (1959) mispelt the host genus Actophilornis as Arctophilornis.

Clay (1950b) and Lakshminarayana (1970a) also agree with Lowe's opinion but with the addition of Jacanidae, (Clay, 1951), Jacanidae and Eurypygidae (Lakshminarayana, 1970a, b). So far only Rallidae and Gruidae have been reported as the hosts of the genus *Cyclocoelum*. Chandler (1916) states that :

"In general it seems best to consider the Gruidae, Aramidae and Rallidae as off-shots from a primitive stem leading to the Charadriiformes, while the Otididae, Phosphiidae and possibly Aramidae, are more probably early off-shots from the stem leading to the Columbae and Galli."

The distribution of *Cyclocoelum* among Gruidae, Rallidae, Charadriiformes and also Galliformes in a way supports Chandler's contention.

Rallidae : Cyclocoelum (Cyclocoelum) mutabile on Fulica, Gallinula and Porphyrula : C. (C.) obscurum on Fulica and Cyclocoelum (Hyptiasmus) oculeum on Fulica, Porzana and Gallinula are the known parasite records. None of these parasite species are shared by Gruidae though they occur on other Charadriidae. It indicates the distinctness of Gruidae from Rallidae and corroborates the evidences arrived at on the basis of Mallophaga studies (vide supra). C. (C.) mutabile has also been reported on Galliformes and C. (C.) obscurum on Muscicapidae (Passeriformes). Members of the same generic complex of Mallophaga are also known from these two host orders (Clay, 1950b, 1953; Carriker, 1944, 1966; Lakshminarayana, 1968, 1970a,b). Carriker (1966) is of the opinion that the mallophagan genus Furnaricola (a member of Rallicola-complex) on Passeriformes should be separated into a distinct genus. Lakshminarayana (1970a) considers the similarity of Rallicola and Furnaricola may be either parallel evolution or secondary infestation and establishment.

Gruidae: Three species viz., Cyclocoelum (Hyptiasmus) ominosum, C. (Hy.) skrjabini and C. (Hy.) antigonis are known from Grus. Up till now these species are not known on any other host orders, although the subgenus Hyptiasmus is known mainly on Anseriformes, Rallidae, Charadriiformes, Piciformes, Passeriformes and Galliformes. The mallophaga of Gruidae are more closely related to Charadriiformes than to those of Rallidae (Clay, 1950b; Lakshminarayana, 1970a).

ANSERIFOR MES

The following trematodes are recorded from Anseriformes: Cyclocoelum (Hyptiasmus) arcuatum on Anser, Bucephala, Clangula, Melanitta, Somataria, Aythya, Anas, Mergus; Cyclocoelum (Hypti asmus) robustum on Aythya, Anser and Cyclocoelum (Hyptiasmus) magnum on Chenopis. The occurrence of the same species of parasite on members of different host subfamilies within the order indicates that possibly these species have not yet attained host specificity and the commonness of infection may be due to similar habits and habitat of the host genera.

PHOENICOPTERIFORMES

Cyclocoelum (Cyclocoelum) theophili is the only species reported on Phoenicopterus. The position of this host order is problematical. Many authors include this as a suborder under Ciconiiformes (Peters, 1931) and family (Ripley, 1961; Wetmore, 1951), others treat it as a separate order (vide Mayr and Amadon, 1951). The members of this order show characters of both Ciconiiformes and Anseriformes. It is generally argued that this similarity may be due to convergence. However, Hopkins (1942) and Clay (1950b, 1962) suggested Anseriformes affinities on the basis of the distribution of Mallophagan evidence. It is curious that the genus Cyclocoelum also occurs in Anseriformes and none of the Ciconiiform hosts have so far been reported.

GALLIFOR MES

Five species viz., Cyclocoelum (Cyclocoelum) mutabile on Gallus; Cyclocoelum (Cyclocoelum) phasidi on Guttera; Cyclocoelum (Cyclocoelum) vogeli on Francolinus; Cyclocoelum (Hyptiasmus) elongatum on Gallus; Cyclocoelum (Hyptiasmus) vagum on Chrysolophus and Syrmaticus are known parasites in this host order. Of these C (C.) mutabile chiefly occurs on Rallidae, Jacanidae, Charadriidae; C. (Hy.) elongatum chiefly on Piciformes and Passeriformes. Isolated members of the same generic complex of mallophaga are known on Galliformes, Gruiformes and Passeriformes (vide Clay, 1950b; Lakshminarayana, 1970a) although the occurrence of Furnaricola (a member of Rallicola-complex) on Passeriformes may be due to parallel evolution.

PODICIPITIFORMES

Cyclocoelum (Haematotrephus) jaenschi is known on Poliocephalus and Podiceps. Members of the subgenus Haematotrephus are also known from Charadriiformes. It is interesting to find similar mallophagan genera on this order, Gruiformes and Charadriiformes (Clay, 1950; Eichler, 1952; Lakshminarayan, 1970a). Chandler (1916) states that :

"In the structure of the breast feathers and down, loons come much nearer the Spheniscformes than do grebes, and they are also more similar to the Procellariformes. The grebes appears to represent a separate offshoot of the group, and have a condition of breast feathers which is different from that of any other birds except some of the Alcidae." Lakshminarayana (1970a) attributed the occurrence of the same parasitic genera of mallophaga as secondary infestation due to similar feather structure between the former and some of the members of the Charadriiformes. In the present case also it may be likely that due to similar habitat a member of the subgenus parasitised a member of the host order in the by-gone days and has undergone sufficient degree of distinction.

PICIFOR MES

Only one species, Cyclocoelum (Hyptiasmus) elongatum is known from Megalaima. It is not possible to draw any conclusion from this stray record.

PASSERIFORMES

Cyclocoelum (Cyclocoelum) obscurum in Zoothera (Muscicapidae): Cyclocoelum (Hyptiasmus) elongatum on Cyanopica, Cissa, Pica, Dumetella (Corvidae) are known in this order. The former is well known on many members of Charadriiformes and Rallidae, while the latter is known on a single genus each of Galliformes and Piciformes. It is not possible to assess the nature of infestation due to varied feeding habits of this host order.

SUMMARY

The distribution of the genus Cyclocoelum Brandes, 1892 in bird host orders has been discussed. The inter-relationships of the bird host orders have been discussed on the basis of the distribution of parasites.

ACKNOWLEDGEMENTS

The authors are thankful to Drs. B. Biswas, K. K. Tiwari and K. V. Lakshminarayana, Zoological Survey of India, Calcutta, for their help in the preparation of this paper. Thanks are also due to the Director, Zoological Survey of India for facilities.

REFERENCES

BAER, J. G. 1951. Ecology of Animal Parasites. (Univ. Ill. Press,) Urbana: 224 pp.

BISWAS, B. 1953. A checklist of genera of Indian birds. Rec. Indian Mus., 50 (1): 1-62.

CAMERON, T W M. 1952. Evolution and Phylogeny. Endeavour, 11: 193-199.

- CAMERON, T W. M. 1964. Host specificity and the evolution of Helminthic parasites. In Ben Dawes' Advances in Parasitology, 2:1-34 (Academic Press). London & New York.
- CARRIKER, M. A. Jr. 1944. Studies in Neotropical Mallophaga. N. IV. Bol. Ent. Venezolana, 3 (2): 65-104.
- CARRIKER, M. A. Jr. 1966. A revision of the genus Furnaricola (Mallophaga) with description of new species. Proc. U. S. nat. Mus., 118, (3532) : 405-432.
- CHANDLER, A. C. 1916. A study of the structure of feathers, with reference to their taxonomic significance. Univ. Calif. Pub. Zool., 13 (11) : 243-446.
- CLAY, T. 1950a. The Mallophaga as an aid to the classification of birds with special reference to the structure of the feathers. *Proc.* 10th Ornith. Congr., Uppasala; 207-215.
- CLAY, T. 1950b. A preliminary survey of the distribution of the Mallophaga on the class Aves. J. Bombay nat. Hist. Soc., 49: 430-433.
- CLAY, T. 1951. The Mallophaga and relationships within the Falconiformes. Ann. Mag. nat. Hist., 93(4): 638.
- CLAY, T 1953. Revision of the genera Mallophaga. I. The Rallicola-Complex. Proc. zool. Soc. Lond., 123: 563-587
- CLAY, T 1962a. A key to the species of *Actornithophilus* Ferris with notes and description of new species. *Bull. Brit. Mus.* (*Nat. Hist*). *Ent.*, 11(5): 191-252.
- CLAY, T. 1962b. A new species of Anatoecus Cummings (Mallophaga) from Phoenicopterus ruber Linn. Ent. Ber. Amst., 22(ii) : 220-226.
- DUBOIS, G. 1959. Revision des "Cyclocoelidae" Kossack, 1911 (Trematoda). Rev. suiss. Zool., 66(2): 67-147.
- EICHLER, W 1949. Some rules in ectoparasitism. Ann. Mag. nat. Hist. (12) 1: 588-598.
- EICHLER, W. 1952. Mallophagan-Synopsis. XV. Genus Pseudomenopon. Zoul. Anz., 148(1/2): 30-40.
- HOPKINS, G. H. E. 1942. The Mallophaga as an aid to the classification of birds. *Ibis*, (14) 6 : 94-106.
- HOPKINS, G. H. E. 1949. Some factors which have modified the phylogenetic relationships between the parasite and host in Mallophaga. Proc. Linn. Soc. Lond., 161 (1) : 37-38.
- LAKSHMINARAYANA, K. V. 1968. Mallophaga Indica I. On the status of *Eulaemobothrium* Ewing, with a description of a new species from India. *Orient. Ins.*, (1967), 1 (3/4): 257-264.
- LAKSHMINARAYANA, K. V 1970a. Systematic studies on Mallophaga of Indian Birds and mammals. *Ph. D. Thesis* of Agra Univ. 1:572 pp.
- LAKSHMINARAYANA, K. V 1970b. Mallophaga Indica. IV Trends in evolution in the *Laemobothrion* complex (Phthiraptera : Mallophaga) with description of a new genus and notes on the distribution of the complex. *Orient. Ins.* 4 (2) : 131-142.

- LOWE, P. R. 1931. On the relations of the Gruimorphae to the Charadriimorphae and Rallimorphae. Proc. Calif. Acad. Sci., (4) 33 (7) : 113-196.
- MANTER, H. W 1955. The Zoogeography of trematodes of marine fishes. *Exp. Parasitol.*, 4: 62-86.
- MANTER, H. W. 1963. The zoogeographical affinities of trematodes of South American fresh-water fishes. Syst. Zool., 12(2): 45-70.
- MANTER, H. W 1965. Host-Parasite relationships. Proc. 26th Biol. Collocuim, 1965, Oregeon State Univ. Publ. : 59-71.
- MAYR, E. and AMADON, D. 1951. A classification of Recent Birds. Amer. Mus. Novit., No. 1496 : 1-42.
- METCALF, M. M. 1929. Parasites and the aid they give in problems of taxonomy, geographical distribution, and palaeogeography. Smithson. misc. coll., 81 (8) Publ. 3010 : 36 pp.
- PETERS, J. I. 1934 Check-list of birds of the World. Vol. II : 401 pp. (Harvard Univ. Press.) Cambridge.
- RIPLEY, S. D. (II). 1961. A synopsis of the birds of India and Pakistan together with those of Nepal, Sikkim, Bhutan and Ccylon. Bombay nat. Hist. Publ. : 727 pp.
- SINDERMANN, C. J. 1937 Diseases of fishes of the Western Atlantic. v. Parasites as indicators of herring movements. Res. Bull., 27, Maine Sch-Sea & Shore Fishes. : 30 pp.
- STUNKARD, H. W and GANDAL, C. P. 1965. A new trematode, Cathaemasia senegalensis, from the saddlebill stork, Ephippiorhynchus senegalensis (Shaw). Zoologica, N. Y zool. Soc., 50: 67-73.
- SZIDAT, L. 1961a. Versuch einer zoogeographie des sud Atlantik mit Hilfe von Leit parasiten der Mcercsfische. *Parasitol. Schriftenr.*, 13: 1-97
- SZIDAT, L. 1961b. Zoogeographische probleme des Sudamerikaniacher kontinents und versuche ihrer Losung mit Hilfe moderner Methoden der "Vergleichenden Parasitologie." Mitt. Inst. Auslandsbezich, 2 (2-3) : 84-89.
- WETMORE, A. 1951. A revised classification of the birds of the World. Smithson. misc. coll., 117 (4) : 1-22.